Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1970823.v1

ABSTRACT

Earlier variants of SARS-CoV-2 have been associated with plasma hypercoagulability (as judged by thromboelastography) and an extensive formation of fibrin amyloid microclots, which are considered to contribute to the pathology of the coronavirus 2019 disease (COVID-19). The newer Omicron variants appear to be far more transmissible, but less virulent, even when taking immunity acquired from previous infections or vaccination into account. We here show that while the clotting parameters associated with Omicron variants are significantly raised over those of healthy, matched controls, they are only raised to levels significantly lower than those seen with more severe variants such as Beta and Delta. We also observed that individuals infected with Omicron variants manifested less extensive microclot formation in platelet poor plasma compared to those harbouring the more virulent variants. The measurement of clotting effects between the different variants acts as a kind of ‘internal control’ that demonstrates the relationship between the extent of coagulopathies and the virulence of the variant of interest. This adds to the evidence that microclots play an important role in determining the severity of symptoms observed in COVID-19.


Subject(s)
COVID-19 , Thrombophilia , Sandhoff Disease
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1493296.v1

ABSTRACT

Background. Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease , attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor ( α7nAChR ) signal transduction, to prevent cytokine storm. Methods. The potential anti-inflammatory effects of famotidine and other H2R antagonists was assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. Results. Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor α and interleukin-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine’s mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. Conclusions. These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.12.21249577

ABSTRACT

BackgroundThrombotic complications occur at high rates in hospitalized patients with COVID-19, yet the impact of intensive antithrombotic therapy on mortality is uncertain. Research QuestionHow does in-hospital mortality compare with intermediate-versus prophylactic-dose anticoagulation, and separately with in-hospital aspirin versus no antiplatelet therapy, in treatment of COVID-19? Study Design and MethodsUsing data from 2785 hospitalized adult COVID-19 patients, we established two separate, nested cohorts of patients (1) who received intermediate- or prophylactic-dose anticoagulation ("anticoagulation cohort", N = 1624), or (2) who were not on home antiplatelet therapy and received either in-hospital aspirin or no antiplatelet therapy ("aspirin cohort", N = 1956). Propensity score matching utilizing various markers of illness severity and other patient-specific covariates yielded treatment groups with well-balanced covariates in each cohort. The primary outcome was cumulative incidence of in-hospital death. ResultsAmong propensity score-matched patients in the anticoagulation cohort (N = 382), in a multivariable regression model, intermediate-compared to prophylactic-dose anticoagulation was associated with a significantly lower cumulative incidence of in-hospital death (hazard ratio 0.518 [0.308-0.872]). Among propensity-score matched patients in the aspirin cohort (N = 638), in a multivariable regression model, in-hospital aspirin compared to no antiplatelet therapy was associated with a significantly lower cumulative incidence of in-hospital death (hazard ratio 0.522 [0.336-0.812]). InterpretationIn this propensity score-matched, observational study of COVID-19, intermediate-dose anticoagulation and aspirin were each associated with a lower cumulative incidence of in-hospital death. Summary conflict of interest statementsNo conflict of interest exists for any author on this manuscript.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.28.20184234

ABSTRACT

As of 28 August 2020, there have been 5.88 million Coronavirus Disease 2019 (COVID-19) cases and 181,000 COVID-19 related deaths in the United States alone. Given the lack of an effective pharmaceutical treatment for COVID-19, the high contagiousness of the disease and its varied clinical outcomes, identifying patients at risk of progressing to severe disease is crucial for the allocation of valuable healthcare resources during this pandemic. Current research has shown that there is a higher prevalence of cardiovascular comorbidities amongst patients with severe COVID-19 or COVID-19-related deaths, but the link between cardiovascular disease and poorer prognosis is poorly understood. We believe that pre-existing immune dysregulation that accompanies cardiovascular disease predisposes patients to a harmful inflammatory immune response, leading to their higher risk of severe disease. Thus, in this project, we aim to characterize immune dysregulation in patients with cardiomyopathy, venous thromboembolism and COVID-19 patients by looking at immune-associated gene dysregulation, immune infiltration and dysregulated immunological pathways and gene signatures.


Subject(s)
Venous Thromboembolism , Cardiovascular Diseases , Chronobiology Disorders , COVID-19 , Cardiomyopathies
SELECTION OF CITATIONS
SEARCH DETAIL